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NOTATION

I Area of water plane of ship

aHalf length of ship

a-ka 42;/g or 2/;

b Half beam of ship

b=b/a Ratio of beam to length of ship

f(SEi) Density of field potential in normalized co-ordinates

G Green's function for fluid flow problems

g Acceleration of gravity

a Damping factor for translatory motion

h(x,z) Boundary values given on immersed surface of ship

IAdded moment of inertia

I Index for components of motion

k Wave number, d2 /g

14M Added mass

NDamping factor for rotational motion

n Normal to immersed surface of ship

p(x,y,z) Space dependence of dynamic fluid pressure

Distance, + +?

r° 0Minimum distance between two neighboring pivotal points

I S(;,:t) Immersed surface of ship in motion

S-(;,;) Immersed surface of ship at rest

U(,y,;) Space dependence of field potential

V(Z,Y,') Space dependence of field potential in normalized co-ordinates

w(x,y,z) Coefficients of em in series development of pm(x,y,z)

X,Y ,Z Surge, heave, and Sway

x,y,z Fixed space co-ordinates

I x',y',z' Moving space co-ordinates

x,y,z Normalized co-ordinates by dividing with wave length

,, Normalized co-ordinates by dividing with half length of ship

vi
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NOTATION

aPerturbation parameter for small motion

C Perturbation parameter for shallow draft ship

Maximum draft at center of shallow draft ship

Co-ordinates of a point on imersed surface of ship
(x, ,0 z  Angles of roll, yaw and pitch

p Density of fluid

I a' Frequency of oscillation

0Velocity potential

I
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I
I
I
I
I
I
I
I
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Introduction

The forced oscillation of a rigid body in the surface of a fluid

is investigated in this paper. John [1] showed that the problem of

steady state oscillations of a body in a free surface can be reduced to

Ia Fredholm integral equation. However the solution of the integral equa-

tion is difficult except for the case of special cross section geometry.

Peters and Stoker (2] as well as Haskind [3] developed a method of solu-

tion for a thin ship.

The present paper concerns the three dimensional problem of a

ship with small draft. We consider the circular and elliptic disks and

deter Ine the dependence of the added mass, added moment of inertia,

and damping factor on the frequency of the forced oscillations. A body

form of disk provides large wave-making effects so that the results will

serve as a complement to the thin ship theory. Two dimensional aspects

of this problem have been treated in [4] and [5].

I. General Formulation

We suppose the half-plane ; < 0 to be filled with an incompr(:ss-

ible, inviscid fluid, y- 0 corresponding to a free surface, and x

and z denoting rectangular axes on that surface. It is assumed that

all motions of the fluid are irrotational, time-periodic, and small

enough so that the problem can be linearized by neglecting squared

I terms.

We suppose that the fluid motion is produced by a ship which

is placed in the surface of the fluid at rest and set into the force-

ed periodic oscillation. When transients are passed, the resulting

l fluid motion can be considered to be time-periodic with frequency cf.

The irrotationality implies the existence of a velocity potential

i $( ,,:t), and the periodicity in time means,

( I ~ l ) ( , y , : t ) - R e [ U ( x,j , ) e ; d t  ]

Next expressing the equation of ship surface in the equilibrium

I position as,

1
pg
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(1.2) -

we assume that the form of the ship SO(;,;) satisfy the following geo-

metric conditions:

SO(;,;) - 0 along the edge of the equilibrium water plane

area which is bounded by the curve C,

(1.3) SO(0,O) - E, maximum draft at the center,

S(;,;) - SO(-,;), and SO(;,;) - s'C ,-;).

In view of the symmetry the co-ordinates of the mass center can be

written as (0,&e,0). If we express the position vector of the mass

center as R- + 3! + UZ, its components are,

7(t) - Re(X ° e' V),

(1. 4) ?(t) - j + Re(?* e " s ),

2(t) - Re(Z" e "'*).

Ve call , 7, and Z, the surge, the heave, and the sway, respectively,
and e, Y', and 2-, the amplitude of the respective motions.

Now let us introduce a set of moving co-ordinates (j' ,

whose origin is attached to the centroid of water plane of the ship in

the equilibrium position. We see that (x' ,j' ,z') will coincide with

fixed co-ordinates (iyz) if the ship is at rest. From rigid body

dynamics, the velocity of a particle in the ship at any time is given

by,

where r =ix jy +kz,9 X~ yx Z9'+k' s)10+O+( n



e(t) - Re(E x eT i)

(1.6) E (t) - Re(O e' } ),
y y

e(t) - Re(e e- ).

We call x, y, and Oz, the roll, yaw, and pitt,, respectively, and

0,), and Oo,the amplitude of the respective motions.

In order to show the meaning of small motions, we transform

the space variables by,

(I.7) x - kx, y - ky, z - k;,

where the wave number k is k -. 2 /g . 2/X, ? being the wave

length of free waves of frequency (. The normalized amplitudes for

the linear motions are given by X" = aX, YO - aY1 , and Z' - aZ,

a being a small parameter. We observe that a small means the ratio of

actual amplitudes to the wave length is small. Similarly the amplitudes

for rotational motions are given by ex - 9, 0' -O ' , and 0 ° -a'
x y' z

Neglecting squared terms means that the potential of the fluid

motion produced by the forced oscillation will have the form,

(I.8) 0 = 4',

where 01 and its derivatives are bounded and we are simply neglecting

terms involved a2 in all. our formulations. For instance we express

Bernoulli's equation as,

(1.9) P - - p - Pot(x,y,z:t) -ppg + p Re[iU(x,y,i) e" I ],

while the surface elevation is,

(T-1 .o .(g,.t) Z - z: ¢,( ,,.t).
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We shall now consider the boundary conditions governing the

potential function U(;,y,;) in (1.1). As the fluid is assumed to be in-

compressible and irrotational,

V 20- 0,
or

(I.11) V'U - 0 in y < 0, outside the ship.

Neglecting terms in a2 , the free surface condition is,

Ott +g - 0,
or

(1.12) U- - kU - 0 on y - 0, outside the ship.
Y

As no flow occurs across the surface of the ship, the kinematic condition

can be written as,

O " n(,j,,:t)._(x,;:t) on the immersed surface

where n is the normal vector to the surface given by,

n - i cos(n,) + " cos(nj) + ^ cos(_,),

and _; is the velocity vector of a point (x,y,;) on the surface. We re-

mark here that the immersed surface in motion S(;,;:t) differs from the

equlibrium surface S*(x,) introduced earlier. However it is consistent

with the omission of terms in a2 to require this condition to be satis-

fied on the equilibrium surface.

If we denote the velocity potential for surge, heave, sway, roll, yaw,

and pitch by 0j J 1,2,...6, respectively, the linearity of the pro-

blen permits to writ(! the total potential as 0 - 0 . Furthermore

the components satify, jal

r-'('I (0) 7co';(n,)



5(04)n - Ox[ (jj°) cos (.,;)-4cos(_,j) ],

(05)n - 4 [;con(_a,;)- cos(n,;)], (06)n - .[;coG(., )-( i)cos(a,;) ]

hence, (ul)n - .o(_,), (u2)n --id-cos(I_,i), (U3)n -- ..s(,,

(-13)
(U )n --id4 (;cos(_,;)-;cos(n,;)],

(U6n yn(ui6), --i j[cos(n.)-i-.)cos(,)], on ;-s(,t.

Finally at large distance, the propagating disturbance must have the form

of a radially outgoing progressive wave, that is,

f0eky ikr Ol') as;+W(1.14) U(;,y,;) - e e as r -n,

where x?- + ;2 , and 0 -arctan (1)

To show clearly the dependence of the solution on parameters, we

now introduce the dynamic pressure functions pj(x,y,z) j -12,..6,

by, X e

l~xy, )- iuz , z, & )
-P2(X,y,z) - i'U a k'k'Zk

, "p2 (x,y,Z) - idu2 ( , Z, I. ),

(z~z ). iU( ' k kk

(1.15)

R " (x,y,Z) . iSU A, , .-

g(; i P5(x ' y ' z) U k' k

z k P6 ( x ' Vsz ) = 46( k, k " k )
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then the conditions (I.11) - (1.14) can be expressed as,

(1.16) V 2P - 0 in y < 0, outside the ship.

(1.17) (pj - (pj) -0 on y 0, outside the shipS

(ln cos(nE,x), (P2) cos(nly), (p3 )n - cos(Pz),

(1.18 )n (y-Y'*)cos(n,z)-Zcos(n,y)S

(P ) zcos(nx)-xcos(nlz), (P) .xcos(,y)-(y-y.)cos(n,x)

on y - 3(X,ztt)3

(1.19) Pj f(o) e ye ir - (1) as r +*oV r

Equations (1.18) can be rewritten as,

() -+2 ______-(Yo 5-
in X z

1 -zS + xS
(1.20) (p) - - (pO - -

jV4, i+SW5 n /i +SX +

xS z X+YOs X

(3)n +S 2 jP6 n j +
A x z x z

on y S(x,z:t).

Here if we neglect terms in a 2, the quantities S(x,z:t) in (1.20) can be

replaced by S*(x,z).
By (1.15) we have Bernoulli's equation in the form,

P -- pp. , 1 Rc~p1(x,y,z) c',,*
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P2 "Pg z  + Pg -" Re[p2(xyz) e6

p3 "-pg Z +$ "g Z'' ('") ' '  '

(1.21) Rep(yz)eV]
P --Pg z  + P9x k Re[p (x,y,z) e "t I,

P -9 Z + pgey a Re(p (x,y,z) e.4. ],

S + P A Re[p(xyz) e-  ].
6=_9k 9z k P6''o

II. Shallow Draft Approximation

In this section we relate the first order forces and moments ex-

erted on a ship which oscillates with six degrees of freedom to the added

mass, added moment of inertia, and damping factor. Then we develop the

perturbation procedure for a ship of small draft.

The three components of the fluid force relative to the fixed co-

ordinate system are,

Fx - ffP(;,y,;:t)cos(n,x) dS,
n.1)Fym -ffsP(x,y,z:t)cos(n,;) cis,

where P is the pressure, and S here represents the immersed surface in

motion. The three components of moment relative to the fixed co-ordinate

axes are,

Gx - dS,

(11.2)G S

G z j I P[(( -)co.sCn,j)-C -?)cor;(n,;)I d5 .
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From the calculated results of forces and moments presented in (1], for

the ship satisfying the symmetry conditions given by (1.3) we find,

FX -- jff..t co(,;) ds + o(a2),

(1H.3) Fy -- Pffs.0 cos(n,y) dS + Rg - cpg?'K + 0(a2 ),

z "-'Pf/..*' cos(a) ds + 0(u),

and

~ ~a- a ffA,(i2 S d; + 0(.2),

(11.4) Gy -upffs0[;cos(n,;)-cos(.,;)]dS + 0(a 2 ),

S-.apJf..V C(G4.)cos(n,;)-icos(, )]dS -P45dd; + 0(u%

where SO denotes the immersed surface in the equilibrium position, and

A# water plane area of the ship.

Next we express the forces and moments for the oscillatory motion,

up to terms of order a. in the dimensionless form,

k' Re(Fxe' )- cosflx gd

k R( ''' - e[// 5*p~cosn,y)dS e" ' ] k--M

(II.5) 0 Re(Fy ) ee )+e.ff
-k 2ARe(e';t

k, Re(F e'* -Re[/f5 *pcos(f,)dS e ' s

and
k4 Re(Ge'-'a )- Re(//p (zcos(n.y)-(y-y.)cos(n.,z))dS e "; 41]

ffA(z' + a.)dxdz Re(e "; t),

(11o6) Re(Gye- Re//s.p;(xcos(n,z)-zcos(n,x)&i e"'.r],
Y
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k 4 Re(G e46*)m Re[ffp ((y-YG)cos(jjx)-xco(njy))iS *4low
cupga6' z A 6

Now we seek to express the oscillatory forces and moments as,

Re(Fie~~--~~-) Re(G e") a - -PgOx &;2i.4lcid
x x xx x x 2-)~i

(11.7) R.(Fye-I~i)- V- -gX Re(Gys'~ j4 -

where 14 and 1 are called the added mass and added moment of inertia, re-

sepectively, while R and H are called the damping factors for translation

and rotation, respectively.

The substitution of (1.4) and (1.6) in (11-7) yields

Re(F .4g4)- aRe((d2M +idN X)eEJ

Re(F * "rl)- xRe((4m +idN Y) eLid ]+Rge(e';C )-aPgRe(?'e';IW )A,

Re(F a~rt. ae((d2 M +idN ) e*"
z 7, zk

(I1.8)

Re(G e'!tg)-Re[(d2I +1.& )2. 0ee&6t age(~ e*'t e

x z x k x' x~p~e k If JA(xj-2)dxdz,

hence~ in the diionsiionli'ss form,

ks~ 11 *d
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I 3 R.(F e'" ) k3 Re(( e *--9 ~k Re(.5
Yptv yp PC cipgY

-k2ARe( e -;dl

agZ' z P PC~

(11.9) 0___ 1 1 ~. q

ytf's P P t k#(21d

upga% y P P 6

Therefore, equating (11.5) and (11.6) to (11.9) we obtain,

k - Jf. frf~ ~ ~ ~ S k'gxpdm-I 8 p)icos anx)dS,

(110) k4 f/s(P)r(co8(lY)(Y)sfhZJ

ksi/p k/8 apfc5(ly(y.CflZ)ic, zdS

k4 1/p -fI/*(P;)r(xcos(.niz)-zcos(nplx)]dSI

k4H/P-I/8 (P;)i(xc0S(a1 z)-zco(l~x)]dS,
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where the pressure function p(x,y,z) is resolved to the real and imaginary

parts as PJ - (PJ)r + i(pJ)i J - l,2,...6.

We proceed to consider the shallow draft approimation. First we re-

mark that the smallness of draft means the ratio of actual draft to the

wave length is small. Therefore, all quantities are to be developed as a

power series in c -2w K/ .

Let the profile of a ship of small draft be,

(II.11) y - eS'(xz) -a < x < a, -b <z < b.

Here S1(x,z) satisfies the following geometric conditions:

S'(OO) - 1, S'(xz) - S'(-x,z), S'(x,z) - s'(x,-z).

Since 1 - m (Sx)2+(Sz)2] (')Ecam %(S1)2+(Sj)2]M9

we obtain,
a. (-CS + o(c 2 )] _j + ( 1 +0(C2 )] - + [-,S' + o(()] .n O ay z a

If we call the right hand members of (1.20) R (xz) j -1,2,...6,

these can be expanded in the form,

OR(x,z MR(O).

The first few terms are,

Hj(x,z) - 0, R (x,z) - 1, Rj(x,Z) - 0, R (x,Z) --z,
(11.12)

R (x,,) 0 , R (x,z) - , . .

Next let us assume that the pressure can be expanded in the form,

M-0



12m
By Taylor's theorem the function pj can be expressed as,

W npi[x,¢S' (x)z] T ln[CeS' (x's)]n a n pjxO,2)."

n-0 nenP

Now we can write the left hand members of (1.20) up to order e as,

1 1 n+l
(IIc + W)] cln[s,(x,z)]n a m

1 1 m+n n+l *
(11.14) + 1 1 + o()] T c (S(x,z)]n = p(x,o,,)

+ [CSI +O(a)]1 1 *mnS(,Z] ~ p'(x,0,s)

- R3(x,s) + gcR(x,z) on y - CS'(x,Z).

Equating the coefficient of the like powers of e we obtain,

apj*(x#0,s)
o . . R3(xZ)

*p~x,,u 3;(x0,) '(x,0~z) 8po(x,ODS)
- - Rj(xul)+ SS ,,ay a x z az aya

n?.ore generally the boundary condition for pj is of the form,

api XPo,,n)~ z*p(0 a n R;(x,s) + E within the water plane of the ship.

Heren consists of k for k< n-l and their derivatives evaluated at y - 0.

Therefore pn can be determined recursively by solving boundary value pro-

blems of the following form:

Find a function w(x,y,z) such that,

(11.15) lw - 0 in y < 0, outside the ship,
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(11.16) Wy - W - 0 on y - 0, outside the ship,

(11.17) WY - h(x,z) on y - 0, within the hull of the ship,

( f1(e) e ky e ikr . 0( ) as r +c.

Note that h(xz) is a given function, and for w - p5 in particular it

is given by (11.12).

We again make a change of independent and dependent variables by

introducing,

t M x / a, y / a, - z / a,

(11.19) w(x,y,z) - a V(x/a, y/a, z/a) where awka

Then the boundary value problem becomes:

Find a function V(S,,) such that,

(11.20) V 2V - 0 in < 0, outside the ship,

(11.21) Vy - a V - 0 on - 0, outside the ship,

(11.22) V- - h(R,T) on - 0, within the hull of the ship,
y

. ) oay' eiaF. 1()a
(11.23) V - aM a e 0(y) as

Here a comment on the change of variables Is in order. Since x - kx and

a - ka, the S corresponds to the ratio of actual co-ordinate x to the half
length of the ship a . Thus in the new boundary value problem all length

dimersions have been made dimensionless by dividing with the half length

of the ship instead of the wave length.

Now we turn to the determination of the added mass or added moment

of inertia and the damping factor for a ship of sall draft. Since we now

have Ye 0(c), cos(n,x) - -CSI + O(C 2), cos(n,y) - 1 + OW), and
cos(n,z) - --3 ' + O(c ,), the following expressions can be found from (11.10).7
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Note that for convenience we adopt the notation pl(xsysz) for previously

introduced pjl(xsy,z). S* is in this case a rej'ion in the x-z plane.

a(Pj ( xS)1
m.{C(X,i)]+CS' y +C[pj(x,Z)]r cSldS- 0(e),

similarly klffx/pd -..j/(p1(x~y,z)]jcos(,x)dS" 0(c),

O5R /P urn-/ (P 2(x~y'z)] cos(n~y)dS

-ff~(p (x,z)] +CS' ~p (x'z)] r +e~plx,5l dS-- ff..(p 2 (xpz7)]rdS#

similarly k3E y/IP6 --J/5*(P2(xsysz)]icos(fly)dSmJfT5*EPl(xlz)Jj dS,

kIR 5/p m/f/.(p 3 (x'y'z)]cos(aiz)dS

B( 4[5xz),Iesap(x, z)]r 0(g),XS~

similarly ki 9 /pdS -.. /*p(X,y,Z)Jicos(n.,z)dS- O(C),

(11.24)

k41,1/P -J/5*(P4(xty'z)]r(scosany)-Ycos(lz)]dS

mf/.([PZ(xJz)]r( z+eS'ESz)dS-// 5 . z(pZ(xuz)] rdS,

k4ffx/Pd rnf *(CP4(xtysz)]i(zcos(n,y)-ycos(fl,z)]dS- fJ z~po(xuu)JidS,

k4 17YIP rnf .Cp5(xlyz)]r(xcos(lz)-zcosQ2..x)JdS

-fJ/.(P;(X,Z)]r(-XCS'+ZES')dS- 0(C),

k4qY1Pd -ff 5 xys)i~xcos(l,z)-zcos(fl,x)]dShO(c),,
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k~f/ If.LIP 6 (xy),S)Yco5I(fLx)-xcoe!ly)]dS

k4147/d w-ff5 (P6(xtysz)]i(ycos(nLlx)-xcos(nly)1cis--ff.-x[pa(xsz)]ids.

Hence, in the dimensionless form we obtain the added mass and dampinp

factor for heave as,

my.. M/Pa a - ~ ')rS

(11.25)

N!- Ry/ W6. -f

the added moment of inertia and damping factor for roll as,

I- ,/P; 4  z 'IffgS

(11.26) /tm i p(,)ds

and the added moment of inertia and dampinp factor for pitch as,

(11.27) 1/p -

Hz=H 2 pad (pg(7c,)JidS,

where is the image of S* under t, transform;ltion =x/a , =z/a.

Bly (11.19) we write, PI(XIYOZ) - avj(x/a,y/a,z/a) .1 - 2,4,6,

then from (11.22) we find,

(11.28) V (7',o,) - I, V!(7,O,T)- 1, v±(T,O,!)- "X on
y y y

tind from (11.21) wehae



16
(11.29) VJ(S,o,1) -aVJ( ,O,T) - 0 j - 2,4,6, outside

III. Integral Representation.

We will discuss here the integral representation of the solution

of boundary value problems for a surface obstacle of negligible draft.

Consider a region bounded by the surface of the ship and the free sur-

face. We shall show that for some function f(S,.) defined over the

surface of the ship,%the potential at any point ( ,3,') in the region

is given by,

Here G(Z',y,, ,) represent the Green's function given in (11 eva-

luated at - , which can be expressed as,

(111.2) G(,,Z4O. ep J0(PF) cip,

2+ J(F)+ . a  J(PF dP,,

where the integral sign is to be understood as integration along

the positive real axis except for an arc in the lower half plane to

avoid the positive real root - a of the denominator. Also,

7-- .(r+ T , and -- -+,hence R denotes the distance from

a point (ROT) in the regioi to a point (Z0,Z) on the surface of the

ship. JO(rr) is the zero order Bessel function of the first kind.

From (111.2) we see that,

82
(111.3) - a G - a in Y < 0.

Now we define the following integrals,

- ff; f( ,7 .) ,
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- 7-Jf~ f~~)H(I,Z) dXd

where

It follows from (III.1) that V(5,YZ) - W(Stji) + L(S,7).

For a function f(,,i) continuous on S the integral L satisfies the condi-

tion (11.20), while W + L satisfies the condition (11.23).

From (111.3) we have,

V-ij,!) - aV(7,,i) -W(EJ,i) in 3 < 0.

By a theorem of the potential theory,

lr W (R,,) - f( ,T) on
-+0 outsideS,

hence,

(11.,4) v-(XoA) - aV(,0,i) - f(SE) on 5,
y

(111.5) V4,O,i) - aV(X,O,) - 0 outside S.
y

From (11.22) it can be seen that the potential V(x,?,i) given by (III.1)

will he the solution of our boundary value problem if f(7,T) is chosen

as a solution of the following integral equation,

h( ''T) - aV(S,O,) - f(1,1),

or,

(111.6) f'(S ) + -Af/ f(f ) ,, d -d- h(R,1).

Observe that the zero draft approximation leads to the kernel being G

itself rather than the normal derivative of G as in (l).

Next we calculate the kernel of the integral equation explicitly.
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From (111.2) we have,

2 ~ (OF)
(111.7) 2 + 2aq ~ 0

Oro -a

2 o"..~pd ~
11 + 2ay 202JOp)d + 2aW P o

1 0 ~p-a 2  -o2 a2

Let us express (111.7) as,

(111.8) 2 - + 2a11 + 2a2I2

where

d, and 12- WV dP

fo(p-a)(p+a) (-)Pa

W~e have

,,Go Pi OF)' pJ (P)G j(pr)
(111.9) 0 d ojPr p 0 () __+______+__c~-a(pa)d

J0 p-a)(P+a) J:p)pa ~(p-a)(+a)

a-e__P14TPF) (D _______

-iJ(aP) +4 Re[ 0v dp +1 dpj,
o ) o(pW-&)(P+a) fa+c(P-a) (P+a)

for small positive e.

Next let us consider the integral J4f pHP'PF)/(P-a)(P+a)dP inte-

grated along the real axis except for an arc running above the root P - a,

then we obtain,

pHf'(pp) a-C PIPI(PF) 0 ,o 0F
(111.10) Jf.dp 0~ dO +i!H'(a-) + 0 d

(p-O(~) -o (0-a)(A+a) o a+c(O-a)(P+a)

20 a) o(P-a)(P+a) L+c(PW-a)(P+a)

From (111.9) and (111.10) we find,
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1(M1.11) 11- i!2 J0 (aP) + Re~i;. +'~(F .jPt d~](III~~ll) 1 i o(0-a)(P+a)

,- Jo(a) - Y(a) + Re ( ) p

I Here we can deform the path of integration into the positive imaginary

axis by setting 0 - iY, then I1 becomes,

Io i J(a?) - I Y(a0) + Re dy

I1 i~ °(a ) - I Y (aa) - Re[ j ' ' dt

I Observing that the integrand is purely imaginary we now express I] as,

(111.12) I,- y iJo(af) - Yo(a ) .

If the path of integration runs below the root P - a, for 12 we

(I1.13) 12 - ia Jo(aF) + Re[ 0 + 0 d1].I o (P-a) (+a)

Repeating the same process employed to obtain (III.10) we find,

(111.14) 12 -2a - - Yo(a? ) + Re dP.
-a) ( +a)

When the path is deformed into the positive iripFinary axis, 12 becomes,

J (aF) - - Y (ar) " lie[2( ( d )I 2 2a 2a 0n" + a.! "

Therefore by a result in 17] we find,
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(IIT.15) 12-I~ ~~ Y(a-) CS .~. (alF) - Y (aFr)]

i [iJoa() - S(aF)].

Finally from (111.12) and (111.15) we obtain,

(111.16) G(,,,Z) 2 + 2a [ ( -Y (Or') + 2a2-1 [J (aa)-S (a;)]
F - 2 0o''o0' 2a o o

1 2 _a)
I . -Y na[ Yo(aF) + So (ar') - i2J° () ],

I where Yo(a0) denotes the zero order Bessel function of the second kind,

and S0(al), the zero order Struve function, respectively. Thus, the

kernel of the integral equation can be evaluated explicitly and indeed

this is another reason for introducing the shallow draft approximation.

Here we observe that as aic 4c S (a)=Y (aF), hence the Green's
function given by (111.16) becomes,

I(E~XZ =2~ - 2ma(Y ,(ar) - J (aF)]

I 2 _'n(sin(aF.'nI41 - o~Fnjr J.(a)/2 ______/_

2 2 r 2j naei(a~f-n/4)
I + 1

According to the Fredholm theory the integral equation (111.6)

will be soluble if the correspondinp homogeneous equation, that is,

(11.17) f.( ,I) +-A fo Z ,S, ,t) d d -0

has only the trivial solution, fO( , ) - 0.

I It has been shown in (1] that if fo is a qolution of (111.17) then

vanishes identially in y < 0.

I
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Since VO(S,7,) vanishes, by (111.4) fOEl) must also vanish. Hence the

l integral equation (111.6) is soluble, and we shall have a solution for

our boundary value problem in the form of (Ill.1).

I When the solution of the integral equation f(2,1) is found, we want to

determine the added mass and added moment of inertia as well as the damp-

ing factors. By substituting (11.28) in (1114.) we find the pressures are

related to the density function f(R,I) as,

I ( .11131) pX - aV2 (2,O,') - 1 - f2 (x, ) for heave,

I ( .11132) p: - aV4(5,O,!) - - f(z,') for roll,

(111.33) p - -aV- f 6(XI) for pitch,

where fi(ES) - 4j5~)+if(3') j-246

Therefore we obtain from (111.31) and (11.25),

My -- ( _ f2(('j) ] dS,My aNr

I 1 2I.&
Ny Y -[ , f2(5ij) dS for heave,

from (111.32) and (11.26),

II = - _ f4
(111.35)

H " -- f 4 f E, ) dS for roll,

I and from (111.33) and (11.27),

(1 JI .3 6)

I Hz M f6// 6(3,) d3 for pitch.

I
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IV. Develcp!!t of A Solution

The inspection of Green's function given by (III.16) shows that

it is a function of a parameter a, hence the solution of the integral

equation (111.6) must, depend upon a. We develop asymptotic solution for

small a in this section prior to treating a nunerical procedure.

The asymptotic development for the solution of two dimensional problem

is presented in [6].

The functions appearing in (111.16) have expansions of the follow-

ing form,

03 ) ( 2m co

mM-0 (m) 2  
M o

(aFr) CO L)m (D2m.l_ 2F)a2l
°( ) - (l,3,..(2m+l)]2  m-0

(IM (1o aO F!- --E 1 1 ar 2
Y (aF) (lo- + ) Jo(a-)+7- ('l)m'i( > - ) - (-)2 m-1 n-l (mI) 2

[log a A M() a + Cm(F) a I]ez m- m=O

Hence (111.16) can be expressed as,

2o 2mi-l C 2m+l
(IV.2) G(r,,,,:a) - 21o aZ A M() a + 7" C (iF) a

r m=O m m-O

+ B (F) a'o in ? A a

m=-O M=O

where,
A° oI A, - A2 -p- ,, .. ,

3 -5

0- 1 1,3 ' 2 1,3,5'

C. 2+ o, , C -- 1 )+
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Rearranging power series we may write,

0 n+l -- 2n+2
(IV.3) aG(,, , :a) - 2 Z c a +22 a loga

n-0 n-0

with new coefficients,

ao= in 2P- - log , 2 =-r' .

;21 1 01 0l " 2 2 " 3 0,

Now we proceed to develop the asymptotic solution of the integral

equation in the form,

(IV.4) f(x,z) C5 2 f i j "(a Joga)J
J-0 j-0

Note that the power product a i(a loga)j can be always ordered as to their

rate of vanishing as a tends to zero, that is,

lim aita logia)J - 0 if i'+j' > i + J, or i'+JI- i + j and J>j'.ai (a loga)j

Substitutinp (IV.3) and (IV.4) in the integral term of (111.6) we obtain,

00 CO W- > (anf af+l+i+i( loea)i

+ Pn f ijan+2+i+j (loga)j+l] d4dU

Z Z ' A aP+q(loga q d- .

2n 9P-O q-0 pqa(1g) dt.

Here we observe that indices are related as,

n+l+i+j - p+q, and j - q,

n+2+j+j = p+q, and j + 1 - q,
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therefore in both cases n - p-l-i so that we find,

(IV.6) Am ap-l-ifi q + Pp-l-i fiq-i

Writing the right hand side of (111.6) in a power series,

h(S,a) - ' hn(S,Z) an

n-C

we can express the integral equation in power series as,

(IV.7) C O a p +q ( l oga ) q+ _I OD o p a P +q ( l oga ) q -  -h J- O a p  on
p-C q-0 p-0 q-0 -C

If q - 0, (IV.7) yields,

(IV.R) fpo - hp iff i cp~l1 ifio dt d',
i-C

and if q 0,

(IV.9) fp 1 (a f (plfi+0pl fiq dZ dt.

These expressions are recursion formulas which permit the determination of

the coefficients fij(2,1) in (IV.4) by means of iteration. For reference,

we write down the first few terms, from (IV.8)

f o o mho '

ho

10 - 1  to%0 0 d~dt - h1  // o ddc

(IV.io) f2  h2 - ~/g(cz~f0 + ax f ) d~dt,

-h2  [(in-j'-log ')h + Ig (hl- 0ff; Z ~~ Jddt

f30o 2-ii (2o+ alfl+ af~) dd;
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-h3 - ((-!9)h0+(±w4-log N)h1  h ff; h
3i2t 1 1 -2 + 1

+ 1hh- -If(~i-V-log h0+!,h

1,h o

fl~J; h 0djdZ )JId}jd djdt

We find from (IV.9) f - 0 for all q, andoq

f (,m ,,, ol 0r) djdZ !/ odd
f 1 1  m f (a 2x 0 h2it ~

(IV.l) f1 2 "- - f; (alfo2 + ofol) ddt - 0,

The above process ultimately leads to (IV.4). We say f(X,i|a) has an es-
timate of degree (i,J) if,

f(f,1'a) - P(a, aloga) + o[ai(a loga)J,

where P is a polynominal of degree (ij). From (IV.3) we have,

aG - -2 a2loga + o(a2loga),

hence we see that the product of aG with a polynominal of degree (ij)

is a polynaminal of degree (i+l,j+l) plus terms o~ai+l(a loga)J+l].

Suppose then that we have shown f(SIta) to have an estimate of degree

(ij). Substituting this estimate in the integral in (IV.7) we obtain

a polynaminal of degree (i+l,J+l) plus terms of o~ai+l(a loga)j+l], with

coefficients determined hy the known quantities foo, "... f Right

hand side of (IV.7) has estimates of degree (i,0) for all i, hence (IV.7)

yields for f(R, ':a) an estimate of degree (i+l,j+l). Then substituting
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the series (IV.4) and (IV.3) in the integral representation (III.1) it

can be seen that V(S,,:a) has the form,

aV(., w, E: a), " 7- Z- Vi(, ,i) a (a loga) j J

j-o j-o

Now retaining the terms with ho in the coefficients fij(2,S)

we write,

(IV.12) f(5,%:a)". f0 + aflo+ a(a loga)f11+ a2f 2o+ a2(a loga)f21+ a3f 30,

where f00 - ho

~~0 1 Af/ho dd

foI o 'uVdd

(IV.13) f20 m-~ f C(in-t-1og E)ho - 31/[4 !0 dt )]d~dZ

h o h

o - I/fS /I h/ h

f 91Jf; ((-)h0-(in-t-log I) _I/f a0 d~d'

1 °hdtd)dld.,

According to (11.12) ho is equal to 1 for the heave, Z for the roll, and

for the pitch. Hence the integral J/ hodjd' becomes the water plane

area in the case of heave, and vanishes in other cases.

Substitutinp the asymptotic solution (IV.12) in (111.34) - (111.36)

we obtain the first non-vanishing term of the normalized added mass,

added moment of inertia, and damping factor as,

My1M - d4d- ) d i d - 0(),

Ny2--I- ff dj dg d:Rdi - a ,_S2 = O(a),
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x a 2 r

(IV.14) 
3

1 /1. -- -1 & ~d ) f; d~d dd I ; - 0( a2,

H-3 fj' -d~d- )d-d 3F ddi - 0(az).

Note that N is equal to the product of the parameter a and the square

of normalized water plane area S. As the parameter a tends to zero, Ny,

Hx, and Hz vanish while My, Ix, and Iz approach non-zero constants.

This is to be compared with the situation in two dimensional case where N

becomes a constant while M tends to infinity as shown in [5] and [6].

These estimates indicate that the strip method shown in [5] is not expect-

ed to yield accurate results for low frequency.

V. Numerical Procedure

Ile suppose the surface of a flat ship to be an ellipse given by

(;/;)2+ (=/)2 - 1, or in normalized co-ordinates 3 +( / - 1 with

-b/a , and develop a numerical procedure by which the value of un-

known function f(7,.) in the integral equation (111.6) can be determined

approximately. We replace the equation (111.6) by a set of linear equa-

tions relatine the values of f(5,T) at chosen pivotal points on the

elliptic surface. Then the surface integrals in the linear equations are

evaluated by !ALmpson's rule given by,

(V.1) f5,z)d7d 1 c [h ) C1 1(;F,V)]diz k D [h C f(5r I
c It c 1 -0 m*O 10

for a continuous function f(xi). Here h -(b-a)/p, k=(d-c)/q, and

C1 ta'kes the valu'!s 1/3 for 1=0 or p, 4/3 for 1-2n, and 2/3 for 1=2n+l,

respectively. 1) tak,;s the values 1/3 for m O or q, 4/3 for ml 2n, and

2/3 for m-2n+l, rf-3-,p,,.cvely.

5uhrtitution of (111.16) ir (111.6) yieldi,
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- 2h(5,E) on 7 - S(,E).

If we write the real and imaginary parts separately, the following pair of

equations will result.

2fr(X'g'i)+ 1f;f(,) 1 -a log(a?)- nR(a?)1-f1 (,Z KaJ (a?)}cdd' -2h(5r,!),

(v.2)

2fi(m)E+ 1 + -a log(aF)- aF)JdtdZ - 0,

where R(a?) - Y (a?) + S (aF) - log(aF).
0 0 RK

We now establish a lattice on the elliptic surface S by dividing

the long axis into eight equal intervals h. and the vertical ordinates

parallel to the short axis into four equal intervals k(5 ), that is,

h - 1/4 and k(R) - b r17-72 /2. In the course of additional computations

for improving numerical results these intervals are bisected to yield a

finer grid. However we only present here the procedure for original la-

ttice. In this instance, each pivotal point can be identified by the co-

ordinates ;F, and - where 3i-(i-4)/ imO,l,...8, and z<i) -

5-L- r--- J-O,l,...4. To determine the values of f(',S), we consider

the equation (V.2) only at thirteen pivotal points contained in one qua-

drant. [Note that for the fine lattice, the pivotal points contained in

one quadrant are ftrty-one.] 'hen the values of f(T,i) at these points

are known, the symmetry or anti-syimnetry properties of the function will

enable us to determine the values at the rest of pivotal points.

As 7 denotes the distance from a fixed pivotal point ( i,'j to

any pivotal point (x,) - ( , ) where 1=O,1,...8, and m-,l,...4,

we find the integraids,
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_( _) (_- _(__- and f(t,) loga)(xi- S

possess a singularity at ( )). Nevertheless, the singular

integrals associated with these integrands do exist. We will presently

show how these integrals can be evaluated.

(i) Treatment of the integral

We choose the shortest distance r0 between any two neighboring

pivotal points and draw a circular region about the fixed pivotal point.

If the integral Il(~i, j) i'. evaluated over the region S-b, and the ex-

cluded circular region 6 separately,

(V.3) I (Ot -17 , ,f( dtd +f(Sri,')[ I djdK

where the function f(3r,T) is regarded as a constant over the region 6.

Since the integral over the circular region becomes,

JoJo d?~ ( -2nr 0
we obtain,

(v.4) I(iIj) 2nrof(7,'jT , +

Now suppose the integral Il(i, j) is evaluated by (V.1) assignin, a

fictitious value r0 for - at the singularity,

f-A) ddZ + f( i 4,'C

A-6~~ ~ ~ dx + 'rr0 f

C -Ck 
f(7 1 1  z)

1 0 M 1 (5F 2T p
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where the notation - denotes the double sunation with F -rot

inside the circle. C1 and Dm are the coefficients of Simpson's rule in

the S- and 1-directions, respectively.

Hence we find,

(V.5) fff _ _=__qtr_ d0d= fOfiA

+ C 1 hD-k(5El)

TZ 4 ARxi-Il)2+(hj4,M)2

Substitution of (V.5) in (V.4) yields,
8 f( f1 ' 3 )

(v.6) I (xi, z9 1rf(, : i C hD k(. -

For pivotal points on the boundary, the correction term Rrof( J ) will

be approximated by one half because the circular region drawn with the

radius r0 about such a pivotal point does not make a full circle as the

region will be sliced off by the boundary of the ellipse.

(ii) Treatment of the integral

12 (i,l).f/ f (,) loga ____-_______-__

If the integral 12( ii,,) is evaluated separately over the region

5-6 and b,

--
*f(Ri'Tj 1/X loga J~ - + _) dJ~dZ

where f(R,i) is again regarded as constant over the region 6.

Sirhce the integral over the circular region becomes,

f log aF di Rd - nr (logaro " 1

-0 0
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we have,
(V.8) I oii>z., ogar -  > (5, i + &-. (,Z og. f(-,dlog> .

Assigning a fictitious value r° for 7 at the singularity, and evaluating

I2(ilj ) by (V.1) we obtain,

/(.fi_)2+Tj- )+ djd)2

/- f(4, )loga( t)+ J'z dtdZ +f(SEi-Zj)logaro ff.d~

1 h m x1)loga -%2fr

Therefore,

1-0 T L L. . J I

Substitution of (V.9) in (V.8) yields,

(Vol0) I2(ria j )  1 -r 2 f(-, EJ)

8 A.

Now the application of Simpson's rule (V.1) together with the

singular integral formulae (V.6) and (V.10) enable us to reduce the act

of integral equation (V.2) to twenty-six (for the original lattice or

eighty-two for the fine lattice) linear equations relating the values of

fr (5,) and fi(zj) at chosen pivotal points.

For convenience we use the following notations,

f ij f (5 j,. ,fl im.f- ij, _Y

(V- , -11)

Kim'i C 1h !Dmk(i 1), and h -j.h5iij)
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We write (V.2) as,

(2 +nar (1- ar )]frj + Kim[ 1 -a logaP-i Ro 2 r 7t1 it1;Ar

- a= 2zl Jo(afm)f ht . 2hi j ,

(v.12) 8 i K _ ar fij

a2M (0 1 m)f*" + (2 +naro(1 .T-)J i

+ 11 -a logar,..- ~ i(ai )]f -0,

where n is a function of (i,j) which takes the value of 1/2 or 1 . Note

that among the coefficients of Simpson's rule the relation, K -K

WK1,5-mK 9-1,5-m , holds. We 
further write,

1M, J - a loga%- 1-ta ir

(v.13)

H - Jo(ar ), and C-ar( .0
2 ]n

Next we shall investigate the charecteristics of linear equations associat-

ed with the heave, roll and pitch, respectively:

() The case of heave.

Since the function f(2,1) satisfies the symmetry relations,

fI'M. f-lm ,and flm fl,5-m for heave,

the double sums appearing in (V.12) can be expressed as,
8 1M lm Im 1,5-M H9-1 9-1,,-m lm.

(V.14) ± K0lmf1"' - " KIM(H +H +N +H)
1-0 ( h liner e ios

From (V.13) and (V.14) the linear equations (V.12) for heave becomes,
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j 2 l ( 1 ,-m 9-l,m..9-1,5-m fim 33
(2 +nC)fr +- im 1 1 1 1 r

l(Hm +Hl,5-m + 9 -l,m+H9 -1,5-m)411 2
1-0 rn-C

I The coefficient matrix of (V.5) is anti-symuetric, and its elements in

the first and the fourteenth columns and row will vanish except the main

I diagonal elements because in the process of the double integration by

(V.1) the function at the both ends of the major axis are not taken into
I account.

(ii) The case of roll.

IFor roll the function f(2j,) satisfies the synmmetry relation,

fl,m f9-lm , and the anti-symetry relation

1J
therefore the double sns appearing in (V.12) for the roll becomes,

I From (V.13) and (V.16) the linear equations (V.12) for the roll becomes,

I(2 +nC)firj  1-C "l

fa 2__ . ,.,m .,5-re n 9-l, m ,,9-l,5-_i .^

X: ± a Klm lm 2 " '2 1,5- "n2 I i 9-1 ,5M

(V.16);- K m(H -H2  +H -H 2  f i m

I ( V.1?)
2.i 2 K (H1,m Hl,5.M+H9 l1mH 9 .,s5hm)flm

(2 +nC)f + 1- im 1 1 1 1 r

I
I

r - -
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-a2  K Hm-l,5-M 9-l,m -9-1,5-m .

m-O im2 2 2 2 r

Here inspection of (V.16) shows that,

HIOm -Hl,5 "M+H9 "'m-H 9l1, 5 "m - 0 for m - 2

I (H I'm - %Hm.I -l95I" )-O for j -2.
1-0 M.-0

jTherefore the coefficient matrix of (V.l7) is also anti-symmetric and
in addition to vanishing first and fourteenth columns and rows, from

(V.18) it has zeroes in the (4+3m)th and (17+3m)th columns and rows

except the main diaponal elements, m here assumes the values 0,1,2,3.

(ii) The case of pitch.

For pitch the function f(k,E) has the symmetry property, 
fl m

I fl,5-mi , and the anti-symmetry property, fljm fl,5-M.fg-lm.fg-l,5-m

therefore the double sums appearing in (V.12) for the pitch becomes,

I (v.19) ZIKM~it~l - Kl(Hllm+HlSftHlmHlSI1f.n

1-o m-0 1-0 m-0
From (V.13) and (V.19) we write the linear equations (V.12) for pitch as,

(H1 lom..I, 5-m- .9-l,m -H9-I, 5-re~oli(2 +nC)fij + a 4 - 1 r

r R - -

±P ±"m 
9-l,m 921,5"m

-a2  H- +H -  H

(V,20 ) f j 1 ± 2 0

(2 +5"m -l1 1 11,

I a 2 1(H ,m+Hl,5-m- 9-1,m -H9-1,,-m,)lmfI.
1-0 m-0

Here it can be geen that,

I
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HI,,m+HI,5"M.H"I,m-H 9 "1 , 5 "m . O for 1 - 4,

(V.21) 2 o
(V,21) (Hlm+Hl3S5m H9 -l"m H9 lSn). 0 for ± - 4.

1-0 m-0

jTherefore the coefficient matrix of (V.20) is anti-symmetric, and from

(V.21) it has vanishing elenents in the (ll+m)th and (24+m) th columns

and rows except the main diagonal elements, m here assumes the values

0,1,2.

The integral equation (V.6) describing the forced oscillation of

a flat ship is thus replaced by three sets of linear equations. For vari-

ous values of the parameter a- d2 /g -2wa/7.., we can determine the values

I of f(S) by solving these equations. Actual steps of the computation work

for obtaining the solution consist of i

1 (1) Determination of the distance F from individual pivotal point to any

pivotal point on the given lattice.

1 (2) Calculation of functions appearing in the coefficients of the linear

equations either by direct evaluation or by interpolation from the given

table.

(3) Summation of the coefficients and grouping of the matrix in accordance

with the type of motion.

(4) Numerical solution of linear equations either by the elimination process

or iteration process.

I In step (1) when the distance f becomes zero, it is replaced by the

smallest distance between two neighboring pivotal points r° , and in

step (2) the functions, 1/F and logaF are evaluated directly and the func-

tion R(ai')- Y (ar-) + S (0() - logaF and J (aF) are evaluated by means of0 a R +0
parabolic interpolation from a pre-arranged table (Table-lJ. In step (4)

successive elimination of unknowns based on the algorithm of Gauss is used.

I
I
I
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Table 1

IInput for Determination of Coefficients of Linear Equation
a? R(a?) Jo (a) al R(aY) Jo (a) aF R(a?) Jo(ar)

0.00 -0.0738 1.0000 2.25 0.7734 0.0828 4.50 -1.2107 -0.3205
0.05 -0.0401 0.9994 2.30 0.7552 0.0555 4.55 -1.2487 -0.3087
0.10 -0.0045 0.9975 2.35 0.7303 0.0288 4.60 -1.2851 -O.2961
0.15 0.0320 0.9944 2.40 0.7036 0.0025 4.65 -1.3200 -0.2830
O.20 0.070% 0.9900 2.45 0.6751 -0.0232 4.70 -1.3533 -0.2693
0.25 0.1085 0.9844 2.50 0.6448 -0.0484 4.75 -1.3850 -o.2551
0.30 0.1486 0.9776 2.55 0.6124 -0.0729 4.80 -1.4151 -0.2404
0.35 0.1881 0.9696 2.60 0.5784 -o.o968 4.55 -1.4435 -0.2253
0.140 0.2274 0.9604 2.65 0.5428 -O.12OO 4.90 -1.4702 -0.2097
0.45 0.2674 0.9500 2.70 0.5054 -0.1424 4.95 -1.4951 -0.1938
0.50 0.3059 0.9385 2.75 0.4667 -0.1641 5.00 -1.5183 -O.1776
0.55 0.3551 0.9258 2.80 0.14263 -0.1850 5.o5 -1.5398 -O.1611
0.60 0.3831 0.9120 2.85 0.3846 -0.2051 5.10 -1.5594 -o.1443
0.65 0.4209 0.8971 2.90 O.3415 -0.2243 5.15 -1.5772 -0.1274
0.70 0.4579 O.6812 2.95 0.2972 -0.2426 5.20 -1.5933 -0.1103
0.75 0.4944 0.8642 3.OO 0.2518 -o.2601 5.25 -1.6075 -0.0931
0.50 0.5293 0.8463 3.05 0.2052 -0.2765 5.30 -1.6199 -0.0758
0.85 0.5631 0.8274 3.10 0.1576 -0.2921 5.35 -1.6306 -0.0585
0.90 0.5957 0.8075 3.15 0.1093 -0.3066 5.40 -1.6394 -O.Od2
0.95 0.6271 0.7868 3.20 0.0600 -0.3202 5.45 -1.6463 -0.0240
1.00 0.6570 0.7652 3.25 O,0099 -0.3328 5.50 -1.6515 -0.OO68
1.O5 0.6852 0.7428 3.30 -0.0507 -0.3443 5.55 -1.6552 O.0102
1.10 0.7121 0.7196 3.35 -0.0917 -0.3548 5.60 -1.6569 0.0270
1.15 0.7372 0.6957 3.40 -0.1435 -0.3643 5.65 -1.6570 0.0436
1.20 0.7606 0.671 3.45 -0.1955 -0.3727 5.70 -1.6555 0.0599
1.25 0.7822 0.6459 3.50 -0.2478 -0.3801 5.75 -1.6523 0.0760
1.30 0.8019 O.6201 3.55 -0.3001 -0.3865 5.80 -1.6475 0.0917
1.35 o.8197 0.5937 3.60 -0.3526 -0.3918 5.85 -1.6412 0.1071

I1.40 08354 o.5669 3.65 -0.4052 -0.3960 5.90 -1.6334 0.1220
1.45 0.8492 0.5395 3.70 -0.4574 -0.3992 5.95 -1.6240 0.1366
1.50 o.8610 o.5118 3.75 -0.5096 -0.4014 6.oo -1.6135 o.1506
1.55 0.8706 0.4838 3.80 -0.5616 -0.4026 6.05 -1.6o14 0.1642
1.60 0.8782 0.4554 3.85 -0.6131 -0.4027 6.10 -1.588o o.1773
1.65 0.8836 o.4268 3.90 -0.6641 -o.418 6.15 -1.5735 o.1898
1.70 0.8868 0.3980 3.95 -0.7147 -0.14000 6.20 -1.5641 0.2017
1.75 0.8879 0.3690 4.00 -0.7644 -0.3971 6.25 -1.5409 o.2131
1.80 0.8867 0.3400 4.05 -0.B137 -0.3934 6.30 -1.5230 0.2238
1.85 0.8833 0.3109 4.1o -0.8620 -0.3887 6.35 -1.5041 0.2339

I 1.90 0.8777 0.2818 4.15 -0.9093 -0.3831 6.40 -1.4842 0.2433
1.95 0.8700 0.2528 4.20 -0.9559 -0.3766 6.1o45 -1.14637 0.2521
2.00 o.A601 0.2239 4.25 -1.0014 -0.3692 6.50 -1.4421 O.2601
2.05 0.8476 o.1951 4.30 -. 0l457 -0.361o 6.55 -1.4200 0.2674
2.10 0.8335 o.1666 4.35 -1.0891 -0.3520 6.60 -1.3973 0.2740
2.15 0.8170 0.1383 4.40 -1.1308 -0.3423 6.65 -1.3738 0.2799

i 2.20 0.7984 O.104 4.45 -1.1715 -0.3318 6.70 -1.3501 O.2351

I
I
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Table 1

Input for Determination of Coefficients of Linear Equation

7.55 -0.9437 0.2593 9.80 -1.1787 -0.2323 12.05 -1.9763 0.0588
7.60 -0,9238 02516 9.85 -1.2071 -0.2366 12,10 -1.9719 0.0697
7.65 -0,9048 0.2434 9.90 -1,2350 -0.2403 12.15 -1.9663 0.0803
7.7o -0.8865 0.2346 9.95 -1.2631 -0.2434 12,20 -1.9548 0,0908
7.75 -0.8691 0.2252 10.00 -1.2915 -0.2459 12.25 -1.9520 0.1009
7.80 -0.8528 0.2154 10.05 -1,3199 -0.2478 12.30 -1,9435 0.1108
7.85 -0.8375 0.2051 10.10 -1.3484 -0.2490 12.35 -1.9339 0.1203
7.90 -0.8233 0.1944 10.15 -1.3770 -0.2496 12.40 -1.9234 0.1296
7.95 -0.8103 0.1832 10.20 -1.4055 -0.2496 12.45 -1.9121 0.1384
8.00 -0.7983 0.1717 10.25 -1.4338 -0.2490 12.50 -1.8997 0.11469
8,05 -0.7876 0.1597 10.30 -1.4620 -0.2477 12.55 -1,8866 0.1550
8,10 -0.7780 0.1475 10.35 -1.4899 -0.2458 12.60 -1.8730 0.1626
8.15 -0.7698 0.1350 10.40 -1.5176 -0.2434 12.65 -1.8584 0.1698
8.20 -0.7627 0.1222 10.45 -1.5449 -0.2403 12.70 -1.8433 0.1766
8.25 -0.7570 O.lo92 1O.50 -1.5718 -0.2366 12.75 -1.8274 0.1829
8.30 -0.7526 0.0960 10.55 -1.5985 -0.2324 12.80 -1.8110 0.1887
8.35 -0.7494 0.0826 10.60 -1.6242 -0.2276 12.85 -1.7940 0.1940
8.40 -0.7477 0.0692 10.65 -1.6496 -0.2223 12.90 -1.7767 0.1988
8.45 -0.7472 0.0556 10.70 -1.6743 -0.2164 12.95 -1.7588 0.2031
8.50 -0.7480 0.0419 10.75 -1.6983 -0.2101 13.00 -1.7406 0.2069
8.55 -0.7494 0.0283 10.80 -1.7216 -0.2032 13.05 -1.7221 0.2102
8.60 -0.7538 0.01146 10.85 -1.7142 -0.1959 13.10 -1.7034 0.2129
8.65 -0.7586 0.0010 10.90 -1.7660 -0.1881 13.15 -1.6843 o.2151
8.70 -0.7649 -0.0125 10.95 -1.7868 -0.1798 13.20 -1.6652 0.2167
8.75 -0.7725 -0.0259 11.00 -1.8068 -0.1712 13.25 -1.6458 0.2178
8.80 -0.7819 -0.0392 11.05 -1.8259 -0.1622 13.30 -1.6267 0.2183
8.85 -0.7914 -0.0523 11.10 -1.8440 -0.1528 13-35 -1.6118 0.2183
8.90 -0.8026 -0.0653 11.15 -1.8611 -0.1430 13.40 -1.5880 0.2177
8.95 -0.8151 -0.0779 11.20 -1.8770 -0.1330 13.45 -1.5689 0.2166
9.00 -0.8290 -0.0903 11.25 -1.8922 -0.1227 13.50 -1.5498 0.2150
9.05 -0.8439 -0.1024 11.30 -1.9060 -0.1121 13.55 -1.5311 0.2128
9.10 -0.860 -. 1142 11.35 -1.9188 -0.1012 13.60 -1.5126 0.2101
9.15 -0.8771 -0.1257 11.40 -1.9305 -0.0902 13.65 -1.4945 0.2069
9.20 -0.8954 -0.1367 1.145 -1.9409 -0.0790 13.70 -1.4767 0.2032
9.25 -0.9145 -0.1474 11.50 -l,9503 -0.0677 13.75 -1.4593 0.1990
9.30 -0,9348 -0.1577 11.55 -1.9586 -0.0562 13.80 -1.4425 0.1943
935 -0,9560 -0.1674 11.60 -1,9657 -00446 13.85 -1.4260 o.1892
9.40 -0.9780 -0.1768 11.65 -1,9713 -0,o330 13.90 -1.4102 0.1836
9.45 -1.0008 -0.1856 11.70 -1.9761 -0.0213 13.95 -1.3951 0.1775
9.50 -1.0245 -0.1939 11.75 -1.9806 -0.0097 14.00 -1.3805 0.1711
9.55 -1,0488 -0.2017 11.80 -1.9820 0.0020 14.o5 -1.3667 0.1642
9.60 -1.0739 -0.2090 11.85 -1.9826 0.0135 14.10 -1.3534 0.1570
9.65 -10995 -0.2157 11.90 -1.9831 0.0250 14.15 -1.3412 0.1493
9.70 -1.1257 -0.2218 11.95 -1.9821 0.0364 14.25 -1.3187 0.1331
9.75 -1.1525 -0.2273 12.00 -1.9796 0.0477 14.30 -1.3087 0.1245
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VI. Discussion of Numerical Results

The computations are in terms of two parameters. The first is

the ratio of the short axis to the long axis of the ellipse b -b/a,

and the second parameter is the ratio of the half length of the ship

to the wave length a - 2Kaf/- 6 2;/g. The values of b chosen for the

investigation were 1/8, 1/4, and I so that they represent a slim ellip-

se and a circle as limiting cases. The parameter a assumes the values

7/ 6 , w/5, R/4, It/3, 2K/5, R/2, 2R/3, and R.

It was shown in section III that for large argument of af, the

asymptotic form of the Green% function contains a trigonometric func-

tion, that is, G(5,;,X,)Z 2/F + 12T 2ya/ ei(a " 71/4). Hence,

the kernel of the integral equation fluctuates as the frequency of os-

cillation increases. This implies that to assure equal accuracy we must

take the grid spacing inversely proportional to the frequency. For this

reason, the computations are carried out at first with the original la-

ttice and then with the fine lattice which has the bisected grid 6pa-

cings.

For each combination of 5and a, three set of linear equations

(V.15), (V.17), and (V.20) were solved in order to determine the values

of f r(, ) and fi(S, at chosen pivotal points. Then using Simpson's

rule (V.1) the normalized added mass M and damping factor N for heavey Y

were evaluated by (111.34). Similary, for roll the normalized added mo-

ment of inertia I x and damping factor Itx were evaluated by (111.35),

while for pitch the normalized added moment of inertia Iz and damping

factor Itz were evaluated by (111.36). In ?tble 2 the values of MyA Ny,

IXP Hx, I Z, and H for a circular disk, b-i, corresponding to various

values of the parameter a are tabulated. In Tibles 3 and 4 the values
of My, NY, Ix, Hx, Iz, and Hz for elliptic disks of the axes ratio 1/4,

and 1/8, depending upon the parameter a are presented. In these tables,

the values within the parenthesis denote the results obtained by the

use of the original lattice and the other values by the use of the fine

lattice. Note that for the case of elliptic disks the results obtained

by the use of the original lattice are not much different from those by

the use of the fine lattice. However in T-ble 2 it can be seen that the
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Table 2

Added Mass, Added Moment of Inertia, and Damping Factors

for Circular Disk t-1.

My Ny Ix  Hx  I H

a - 7/6 2.242 0.990 0.351 0.032 0.335 0.C30
(2.194) (0.977) (0.262) (0.029) (0.194) (O.u j)

a - 7r/5 2.129 1.016 0.415 0.064 0.395 0.060
(2.082) (1.006) (0.306) (0.055) (0.232) (0.044)

a - w/4 1.987 1.026 0.536 0.161 0.509 0.150

(1.943) (1.021) (0.385) (0.130) (0.299) (0.101)

a - "/3 1.809 1.002 0.677 0.651 0.650 0.599

(1.774) (1.007) (0.483) (0.458) (0.387) (0.338)

a "2w/5 1.7o6 0.968 0.126 1.136 0.163 1.078

(1.659) (0.970) (0.069) (0.874) (0.125) (0.683)

a - t/2 1.593 0.910 -0.497 0.602 -0.469 0.601

(1.582) (0.923) (-0.366) (0.575) (-0.277) (0.543)

a -2./3 1.473 0.811 -0.381 0.167 -0.370 0.168

(1.-489) (0.809) (-0.336) (0.147) (-0.316) (0.178)

a = 1.341 0.628 -0.127 0.031 -0.138 0.009

(1.342) (0.533) (-0.151) (0.001) (-0.190) (0.017)

Table 3

Added Mass, Added Moment of Inertia, and Damping Factors

for Elliptic Disk b-1/.

M N I H I Hy y x x z z
a w R/6 0.298 0.099 0.0012 0.00001 0.052 0.002

(0.294) (0.097) (0.0018) (0.00001) (0.040) (0.001)

a - T/5 0.288 0.108 0.0013 0.00001 0.057 0.003

(0.284) (0.106) (0.0018) (0.00001) (0.04) (0.003)

a - s/4 0.274 0.119 0.0014 0.00002 0.065 0.007

(0.270) (0.116) (0.0018) (0.00002) (0.051) (0.006)

a - sf3 0.251 0.129 0.0015 O.00005 0.084 0.020

(0.248) (0.127) (0.0018) (o.0x)05) (o.065) (0.016)
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Table 3

Added Mass, Added Moment of Inertia, and Damping Factors

for Elliptic Disk t-1/4.

My Ny I x  Hx  1 H

a -21/5 0.235 0.133 0.0017 0.00010 0.100 0.043

(0.233) (0.131) (0.0018) (0.00008) (0.078) (0.033)

a - -/2 0.215 0.135 0.0019 0.00020 0.102 0.112

(0.213) (0.133) (0.0019) (0.00017) (0.082) (0.083)

a -2vt/3 0.187 0.132 0.0025 0.00058 -0.041 0.139

(0.187) (0.131) (0.0021) (0.00044) (-0.020) (0.121)

a - 0.154 0.117 0.0032 0.00312 -0.037 0.014

(0.155) (0.118) (0.0023) (0.00184) (-0.040) (0.018)

Table 4

Added Mass, Added Moment of Inertia, and Damping Factors

for Elliptic Disk b-1/8.

M N I H I H
y y x x z z

a - R/6 0.105 0.029 0.00011 0.0000001 0.020 0.0004

(0.107) (0.028) (0.00027) (0.0000001) (0.018) (0.0003)

a - u/5 0.102 0.032 0.00011 0.0000002 0.021 0.001

(0.104) (0.031) (0.00027) (o.o0002) (0.019) (0.00l)

a - 7/4 0.098 0.036 0.00011 0.0000003 0.023 0.002

(0.100) (0.035) (0.00026) (0.0000003) (0.022) (0.001)

a - T/3 0.090 0.041 0.00012 0.0000008 0.027 0.004

(0.092) (0.039) (0.0oo025) (0.000XX07) (0.026) (0.003)

a -2x/5 0.085 0.043 O.OO013 O.0000013 0.031 0.008

(o.o08) (0.041) (0.00025) (0.0000013) (0.030) (0.007)

a = R/2 0.077 0.045 0.00013 0.(X0027 0.037 0.018

(0.079) (0.043) (0.00024) (o.0xx)0o25) (0.035) (0.016)

a -N/3 0.066 0.04, 0.0o015 0.00o066 0.027 0.046

(0.068) (0.042) (0.00023) (o.WX0X059) (0.027) (0.043)

a - R 0.051 0.039 0.00020 0.0000252 -0.017 0.023

(0.053) (0.037) (0.00021) (0.o00020)(-0.016) (0.022)
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fine lattice yield much improved results since Ix and I, and Hx and Hz

must be equal in the case of a circular disk.

In Figure I and Figure 2 the dependence of ; y and on

the parameter a are presented. In Figure 3 and Figure 4 the quantities

and -- 1 are plotted as functions of the parameter a. Similary,

the quantities 2I* and -H are plotted in Figure 5 and Figure 6.
A z A z

The multiplication factor na/A for the ordinates represents the ratio

of the area of a circle having the half length of the ship a as the ra-

dius to the area of the water plane of the ship under consideration, and

was introduced in order to make the curves comparable. Note that these

curves are obtained from the results of the fine lattice.

The curves for the circular disk b-1 in Figure 1 and Figure 2 compare

very closely to the corresponding curves in Figure 6 and Figure 7 in [5)

which were obtained by treating the circular disk as an axial symmetric

two-dimensional configuration.

To ascertain the accuracy of the results represented by the curves for

S-/A and 5-1/8 in Figure 2, the normalized damping factor N' were corn-
y

puted by the following formula based on the strip method,

(VI.l) N'-O 2JN a 2-2)d ,

where the value N2( a f1 ) are taken from Figure 4 in [5] using the

relation, N2(I a ) . As shown in Table 5, for low fre-

quency the strip method does not yield a satisfactory results. For this

range the present method should rive accurate results.

Table 5

Comparison of Damping Factor of Elliptic Disks for Heave Evaluated by

Intepral Squation Method and Strip Method.

For b-/4 For b-l/8

N N N N N
Y y Y Y y y

a - /3 0.27 0.129 0.183 (Not Available)

a = -/2 0.133 0.135 0.166 0.043 0.0144 0.049

a - 27t/3 0.131 0.132 0.153 0.042 0.044 0.046
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Here in Table 5, N0 denotes the value obtained by the use of the original

lattice and N denotes that by the use of the fine lattice.

An additional check for the results of the heave of a circular

disk can be made by comparing the values of fr(1,T) and fi(1,T) at pivo-

tal points of the equal radial distances. V'e compare these values at the

tip and the half radial distance on the 7-axis with those at the tip and

at the half radial distance on the -axis in Table 6 using the results of

the fine lattice. At higher frequency the agreement was found to be unsa-

tisfactory presumably due to the use of non-square grid which is primarily

designed for the elliptic disk.

Table 6

Comparison of Real and Imaginary Parts of Density for Heave at Pivotal Points

of Equal Radial Distances on Circular Disk.

f r( ,T) fi(5,T)

At Tip on S,Tip on T,1/2 on 3,1/2 on T,Tip on STip on t,1/2 on ,i/2 on

a - R/6 0.727 0.712 0.587 0.596 -0.185 -0.181 -0.160 -0.163

a - 19/5 0.694 0.678 0.526 0.536 -0.232 -0.226 -0.196 -0.200

a - n/4 0.655 0.635 0.442 0.452 -0.301 -0.292 -0.245 -0.251

a - R/3 0.604 0.579 0.312 0.320 -0.409 -0.393 -0.315 -0.324

a -2it/5 0.572 0.543 0.212 0.218 -0.490 -0.468 -0.361 -0.373

a - ,/2 0.535 0.498 0.063 0.064 -0.604 -0.570 -0.417 -0.433

a -2w/3 0.1.88 0.435 -0.185 -0.198 -0.774 -0.719 -0.482 -0.505

a - 1 0.424 0.331 -0.678 -0.729 -1.048 -0.954 -0.523 -0.558

We remark that as the frequency of the forced oscillation tends to

zero, that is a 0, M ybecomes a constant and Ny being a52 the damping

factor will vanish. In two dimensional case however, My being O(loga) the

added mass tends to infinity while Ny becomes a constant. In Figure 2, as

a tends to zero the ordinate becomes,

a o

where A - n;C, and ; - for the elliptic disk. Hence at the origin
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the slopes are,

R2 - 9.8696 for 5-1,

1/4 n2 - 2.4674 for 5-1/4,

1/8 %2 - 1.2337 for ;-1/8, respectively.

These slopes are shown in Figure 2 by the straight lines. It is to be

observed that the computed results deviate very rapidly from the low

frequency approximation.

For the roll and pitch, the results comparable to those presented

in Filgure 3 to Figure 6 cannot be found in the existing literatures.

For the case of circular disk 5-1, realizing that roll and pitch are equi-

valent if the disk is turned around by the right angle, we compare the va-

lues of fr( S,!) and fi(Z,Z) for roll and pitch at pivotal points of the

equal radial distance. More precisely these values for pitch at the tip

and at the half radial distanco on X-axis are compared with those for roll

at the tip and at the half radial distance on T-axis in Table 7 using the

results of the fine lattice. A bad agreement was found at a - n again pro-

bably due to the geometrically unsuitable lattice in use.

Table 7

Comparison of Real and Imaginary Parts of Density for Roll and Pitch at

Pivotal Points of Equal Radial Distances on Circular Disk.

f (r)fi(Ei
At Tip on 7,Tip on T,1/2 on 7,i/2 on 7,Tip on 3,Tip on.!,l/2 on 5,1/2 on 7,

(Roll) (Pitch) (Roll) (Pitch) (Roll) (Pitch) (Roll) (Pitch)

a - w/6 -1.144 -1.153 -0.669 -0.657 -0.020 -0.020 -0.012 -0.011

a - w/5 -1.208 -1.218 -0.739 -0.722 -0.046 -0.044 -0.029 -0.027

a - R/ -1.339 -1.350 -0.886 -0.859 -0.138 -0.134 -0.095 -0.089

a - R/3 -1.522 -1.545 -1.193 -1.150 -0.671 -0.619 -0.560 -0.514

a -2w/5 -0.905 -0.977 -0.795 -0.812 -1.259 -1.260 -1.282 -1.206

a - u/2 -0.126 -0.146 0.089 0.060 -0.642 -0.683 -1.006 -0.986

a -2n/3 -0.265 -0.268 0.259 0.239 -0.039 -0.049 -0.568 -0.553

a -57t/6 -0.584 -0.558 0.479 0.444 0.172 0.209 -0.396 -0.378

a - it -0.748 -1.026 0.561 0.604 -0.371 -0.215 0.1479 0.276
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We further observe that as the frequency of the forced oscillation

tends to zero, that is a 0, I x and Iz become constants, while Hx and Hz

being 0(a2) the damping factors will vanish.

The computation work is performed with the IBM 7090 data processing

system at the Westinghouse Electric Corporation in Fast Pittsburgh Works.

The program for the computation is coded into the Fortran language.
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FJ ure 4
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Fipure 5
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Figure 6
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